skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Myers, Roberto C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The anisotropic optical absorption edge of β-Ga2O3 follows a modified Beer–Lambert law having two effective absorption coefficients. The absorption coefficient of linearly polarized light reduces to the least absorbing direction beyond a critical penetration depth, which itself depends on polarization and wavelength. To understand this behavior, a Stokes vector analysis is performed to track the polarization state as a function of depth. The weakening of the absorption coefficient is associated with a gradual shift of linear polarization to the least absorbing crystallographic direction in the plane, which is along the a-exciton within the (010) plane or along the b-exciton in the (001) plane. We show that strong linear dichroism near the optical absorption edge causes this shift in β-Ga2O3, which arises from the anisotropy and spectral splitting of the physical absorbers, i.e., excitons. The linear polarization shift is accompanied by a variation in the ellipticity due to the birefringence of β-Ga2O3. Analysis of the phase relationship between the incoming electric field to that at a certain depth reveals the phase speed as an effective refractive index, which varies along different crystallographic directions. The critical penetration depth is shown to be correlated with the depth at which the ellipticity is maximal. Thus, the anisotropic Beer–Lambert law arises from the interplay of both the dichroic and birefringent properties of β-Ga2O3. 
    more » « less
  2. Abstract This paper presents the design, material growth and fabrication of AlGaN laser structures grown by plasma-assisted molecular beam epitaxy. Considering hole transport to be the major challenge, our ultraviolet-A diode laser structures have a compositionally graded transparent tunnel junction, resulting in superior hole injection and a low contact resistance. By optimizing active region thickness, a five-fold improvement in photoluminescence intensity is obtained compared to that of our own non-optimized test structures. The electrical and optical characteristics of processed devices demonstrate only spontaneous emission with a peak wavelength at 354 nm. The devices operate up to a continuous-wave current density of 11.1 kA cm−2at room temperature, which is the highest reported for laser structures grown on AlGaN templates. Additionally, they exhibit a record-low voltage drop of 8.5 V to achieve this current density. 
    more » « less
  3. Abstract In this work, we demonstrate two-junction UV LEDs enabled by transparent tunnel junctions. Low voltage-drop tunnel junctions were realized in Al0.3Ga0.7N layers through a combination of high doping and compositional grading. Capacitance and current–voltage measurements confirmed the operation of two junctions in series. The voltage drop of the two-junction LED was 2.1 times that of an equivalent single-junction LED, and the two-junction LED had higher external quantum efficiency (147%) than the single junction. 
    more » « less